Derangements on the n-cube

نویسندگان

  • William Y. C. Chen
  • Richard P. Stanley
چکیده

Chen, W.Y.C. and R.P. Stanley, Derangements on the n-cube, Discrete Mathematics 115 (1993) 65-15. Let Q. be the n-dimensional cube represented by a graph whose vertices are sequences of O’s and l’s of length n, where two vertices are adjacent if and only if they differ only at one position. A k-dimensional subcube or a k-face of Q. is a subgraph of Q. spanned by all the vertices u1 u2 u, with constant entries on n-k positions. For a k-face Gx of Q. and a symmetry w of Q., we say that w fixes Gt if w induces a symmetry of Gt; in other words, the image of any vertex of G,, is still a vertex in Gk. A symmetry w of Q. is said to be a k-dimensional derangement if w does not fix any k-dimensional subcube of Q.; otherwise, w is said to be a k-dimensional rearrangement. In this paper, we find a necessary and sufficient condition for a symmetry of Q. to have a fixed kdimensional subcube. We find a way to compute the generating function for the number of k-dimensional rearrangements on Q.. This makes it possible to compute explicitly such generating functions for small k. Especially, for k =O, we have that there are 1.3 . (2n1) symmetries of Q. with at least one fixed vertex. A combinatorial proof of this formula is also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Groups of Derangements on the n-Cube

W. Y. C. Chen and R. P. Stanley have characterized the symmetries of the n-cube that act as derangements on the set of k-faces. In this paper we aim to use their result to characterize those finite subgroups of symmetries whose non-trivial members are derangements of the set of k-faces.

متن کامل

Finite Groups of Derangements on the n-Cube II

Given k ∈ N and a finite group G, it is shown that G is isomorphic to a subgroup of the group of symmetries of some n-cube in such a way that G acts freely on the set of k-faces, if and only if, gcd(k, |G|) = 2s for some non-negative integer s. The proof of this result is existential but does give some ideas on what n could be.

متن کامل

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher

Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...

متن کامل

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 115  شماره 

صفحات  -

تاریخ انتشار 1993